SFD.pl - Sportowe Forum Dyskusyjne

Nikotyna skuteczna na PCT ?

temat działu:

Doping

słowa kluczowe: ,

Ilość wyświetleń tematu: 11325

Nowy temat Wyślij odpowiedź
...
Napisał(a)
Zgłoś naruszenie
Ekspert
Szacuny 11148 Napisanych postów 51569 Wiek 31 lat Na forum 24 lat Przeczytanych tematów 57816
jestem adminem sąsiedniego forum, ale puki mhm nie ruszy dupy strasznie mi się nudzi na necie to też na szybko skleciłem coś do działu...

Po pierwsze żeby było jasne, nie zachęcam do stosowania nikotyny w żadnej postaci (palenie zabija), aczkolwiek dodam że siedząc teraz przed kompem mam pod językiem 4mg nikotyny w postaci tabletki i moge śmiało powiedzieć że 'to' działa Dodam że nikotyna NIE jest skutecznym środkiem po cyklu, aczkolwiek jako dodatek jest warta rozważenia (po przeczytaniu każdy może wyciągnąć własne wnioski).
Jak wiemy po cyklu największym problemem po cyklu jest wstrzymanie syntezy gonadotropin przez przysadkę i tym samym blokada syntezy męskich hormonów płciowych, problem ten rozwiązuje się najczęściej przez blokade receptorów estrogenowych w przysadce, tym samym stymulując ją do działania... I tu pierwszy pożyteczny efekt nikotyny - w badaniach (1,2,3,4,5) udowodniono że działa jako inhibitor enzymu aromatazy przy udziale którego to powstaje 'blokujący' i odpowiedzialny za niepożądane skutki czyli np. gino estrogen.
Innym problemem związanym z niedoborem hormonów płciowym jest zanik libido i erekcji... I tu znowu pozytywne działanie nikotyny która blokuje enzym odpowiedzialny za metabolizm (przekształcanie go do prohormonu) DHT (silnego androgenu który ma pozytywny wpływ na nastrój i funkcje seksualne). Oczywiście nadmiar DHT może mieć negatywne efekty uboczne w postaci łysienia czy przerostu prostaty, ale po cyklu, przy braku androgenów jest to raczej nierealne (chyba że w/w tkanki zostały zjechane podczas samego cyklu, np przez duze dawki testa czy provironu).
Jedyny problem miedzy nikotyną a układem hormonalnym, jest niejasny wpływ na poziom ACTH i zarazem na poziom sterydów kory nadnerczy, ale po cyklu jak wiadomo ich poziom i tak jest wysoki i najprawdopodobniej nie ma to większego znaczenia.
Tyle o wpływie na układ endokrynny.. Teraz będzie o nerwowym...
Jak wiemy po cyklu z nastrojem nie jest zbyt różowo Dzieje się tak przez przez spadek poziomu neurotansmiterow w mozgu.
Nikotyna łącząc się z receptorami acetylocholinowymi w różnych neuronach, stymuluje neuroprzekaźnictwo na różne sposoby, działając na różne obszary mózgu. Najbardziej 'znanym' bo odpowiedzialnym za uzależnienie od nikotyny efektem jest odziaływanie na układ nagrody w mózgu - wywołanie przyjemności. Pobudza też neurony noradrenergiczne i mimo że jest raczej stymulantem, poprzez wpływ na neurony serotoninergiczne i GABA ergiczne ma uspokajające i tonizujące działanie... Wszystkie te efekty to prawie dokładnie substytut dla 'strat' które mają miejsce po zakończeniu cyklu.
Ważny jest też wpływ na poziom leptyny i neuropeptydu Y - jeżeli idzie o kontrole apetytu (rozregulowanego przez kortykosteroidy) (a także na skutek poburzenia chlolinergicznego przyspieszona perystaltyka i wpływ na wydzielanie w układzie pokarmowym)... ale to efekty bardziej przydatne 'na diecie', bo tam nikotyna ma jeszcze wieksze zastosowanie.

O efektach ubocznych nie pisze bo to każdy zna.

refy co do działania na ukł. endokrynny:

1. Competitive inhibition of human placental aromatase by N-n-octanoylnornicotine and other nornicotine derivatives.

Endocrine Biochemistry Department, Medical Foundation of Buffalo Research Institute, NY 14203.

In a study of the effect of N-n-octanoylnornicotine and other acyl derivatives of nornicotine on the aromatization of androstenedione by human placental microsomal aromatase, we found that N-n-octanoylnornicotine, a component of cigarette smoke, exhibited competitive inhibition with an apparent Ki of 0.65 microM. This is comparable to that of aminoglutethimide, the clinically-used non-steroidal aromatase inhibitor. N-n-Decanoylnornicotine and N-(4-hydroxyundecanoyl)nornicotine exhibited apparent Ki values of 0.86 microM and 0.24 microM, respectively. This study suggests that cigarette smoke components may have a direct effect on estrogen biosynthesis and that these compounds may prove to be useful parent structures for development of active site probes for further elucidation of estrogen biosynthesis and might eventually lead to the development of alternative non-steroidal anti-cancer therapy.

2. Tobacco alkaloid derivatives as inhibitors of breast cancer aromatase.

Endocrine Biochemistry Department, Medical Foundation of Buffalo Research Institute, N.Y. 14203.

The inhibition of estrogen biosynthesis by the use of aromatase inhibitors is emerging as a valuable approach to breast cancer therapy. Because smoking has a profound effect on estrogen-related processes we examined the ability of tobacco constituents to suppress estrogen production by breast cancer aromatase. N-n-octanoylnornicotine and N-(4-hydroxyundecanoyl) anabasine suppressed aromatase activity in culture of two human breast cancer cell lines, MDA-MB-231 (IC50 of 310 and 20 microM, respectively) and SK-BR-3 (IC50 of 450 and approximately 2 microM, respectively). MDA-MB-231 cells induced by 250 nM dexamethasone or 1 mM (Bt)2cAMP were slightly more sensitive to both inhibitors. Kinetic analyses showed that inhibition by N-(4-hydroxyundecanoyl)anabasine is competitive with respect to androstenedione as substrate, with apparent Ki values of 0.2 microM against microsomal aromatase activity derived from both (Bt)2cAMP-induced MDA-MB-231 cells and human breast tumor tissue. The corresponding apparent Ki against human placental microsomal aromatase activity was 0.4 microM. These results indicate that acyl derivatives of nornicotine and anabasine block estrogen formation in breast tumor cells and tissue and could contribute to the decreased intra-tissue estrogen levels in women who smoke.

3. Aromatase inhibitors in cigarette smoke, tobacco leaves and other plants.

Endocrine Biochemistry Department, Medical Foundation of Buffalo Research Institute, NY 14203.

A chance observation that cigarette smoke interferes with the aromatase assay led us to investigate tobacco leaf and smoke extracts for the presence of aromatase inhibitors. The highest inhibitory activity was found in the basic fraction of cigarette smoke. Further purification of this fraction led to the identification of N-n-octanoylnornicotine. Synthesis and testing of a series of acylated nornicotines and anabasines for their ability to inhibit aromatase showed an interesting correlation of activity with the length of the acyl carbon chain, with maximum activity at C-11. The acylated derivatives showed activity which was significantly greater than that of nicotine and anabasine. In vivo studies in rats indicated that administration of this inhibitor delayed the onset of NMU-induced breast carcinoma and altered the estrus cycle. These in vivo studies suggest that tobacco alkaloid derivatives exert their effects by suppression of the aromatase enzyme system. Toxicity studies indicated relatively low toxicity with LD50 for N-n-octanoylnornicotine = 367 mg/kg body weight. When extracts from thirty five varieties of vegetables, plant leaves, and fruits were analyzed, seventeen showed quantitatively significant aromatase inhibition which was comparable to that of green tobacco leaf, suggesting that naturally occurring substances may affect endocrine function through aromatase inhibition.

4. Constituents of cigarette smoke inhibit human granulosa cell aromatase.
Recent epidemiologic studies suggest that women smokers have lower endogenous estrogen levels than nonsmokers. The effects of aqueous extracts of cigarette smoke on aromatase were evaluated in cultures of human granulosa cells. Aqueous extracts of cigarette smoke inhibited the conversion of androstenedione (delta 4A) to estradiol in a dose-dependent manner. Dialysis experiments demonstrated that 90% of the inhibitory activity of aqueous extracts of cigarette smoke was in the less than 1000 mol wt fraction. Removal of the aqueous extract of cigarette smoke from the culture medium resulted in a complete reversal of the inhibition of delta 4A aromatization. Addition of supraphysiologic concentrations of delta 4A (73 microM) to the culture medium blocked the smoke-induced inhibition of aromatization. Two low-molecular-weight components of cigarette smoke, nicotine and anabasine, inhibited granulosa cell aromatase in a dose-dependent manner. These studies suggest that constituents of cigarette smoke inhibit a major steroidogenic pathway.

5. Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro.
Epidemiologic studies suggest that women who smoke have lower endogenous estrogen than nonsmokers. To explore the possible link between cigarette smoking and decreased endogenous estrogens, we have examined the effects of constituents of tobacco on estrogen production in human choriocarcinoma cells and term placental microsomes. In choriocarcinoma cell cultures, nicotine, cotinine (a major metabolite of nicotine), and anabasine (a minor component of cigarette tobacco) all inhibited androstenedione conversion to estrogen in a dose-dependent fashion. Removal of nicotine, cotinine, and anabasine from the culture medium resulted in the complete reversal of the inhibition of aromatase. In the choriocarcinoma cell cultures, a supraphysiologic concentration of androstenedione (73 microM) in the culture medium blocked the inhibition of aromatase caused by nicotine, cotinine, and anabasine. In preparations of term placental microsomes, nicotine, cotinine, and anabasine inhibited the conversion of testosterone to estrogen. Kinetic analysis demonstrated the inhibition to be competitive with respect to the substrate. These findings suggest that some nicotinic alkaloids directly inhibit aromatase. This mechanism may explain, in part, the decreased estrogen observed in women who smoke.

6. Nicotine and cotinine effects on 3 alpha hydroxysteroid dehydrogenase in canine prostate.
We have recently observed that cigarette smoking affects plasma androgen concentrations. The effects of nicotine and cotinine, two products of cigarette smoking, on testosterone metabolism were determined. The activity of delta 4 steroid 5 alpha-reductase, which converts testosterone to 5 alpha-dihydrotestosterone (DHT) was measured in isolated dog prostate nuclei using testosterone (0-200 nM) as substrate and NADPH as cofactor. Activity of 3 alpha-hydroxysteroid dehydrogenase (HSD), which converts DHT to 3 alpha-androstanediol (3 alpha-diol) and is a reversible enzyme, was measured in isolated dog prostate microsomes with DHT (0-20 microM) as substrate and NADPH as cofactor. When microsomal fractions were incubated for 1 hour with and without nicotine (0-50 microM) and cotinine (0-100 microM), enzyme activity of HSD was significantly suppressed (p less than 0.001). The Vmax was not affected significantly (p greater than 0.60) and Km increased with increasing concentrations of nicotine and cotinine (p less than 0.05). Both nicotine and cotinine are competitive inhibitors of HSD in dog prostate microsomes with Ki's of 61 and 89 microM, respectively. The apparent 5 alpha-reductase activity was unaffected by nicotine and cotinine. The inhibitors produced a marked effect on activity of HSD when used in concentrations achieved in humans who smoke cigarettes. The results suggest that nicotine and cotinine are competitive inhibitors of the HSD, an important enzyme involved in the metabolism of DHT and produce an accumulation of DHT. These products of cigarette smoking could alter androgen action in tissue such as skin and prostate.

I pozostałe refy... tamte tylko zacytowałem bo sie odnoszą do najważniejszego....

1. Zevin S, Gourlay S, Benowitz N. Clinical Pharmacology of Nicotine. 1998;16:557-564.
2. Domino E. Tobaco Smoking And Nicotine Neuropsychopharmacology: Some Future Research Directions. Neuropsychopharmacology. 1998;16(8):456-68.
3. Balfour D, Fagerstrom K. Pharmacology of Nicotine and Its Therapeutic Use in Smoking Cessation and Neurodegernerative Disorders. Pharmacol. Ther. 1996;72(1):51-81
4. Gotti C, Fornasari D, Clementi F. Human neuronal nicotinic receptors. Prog Neurobiol 1997; 53: 199-237.
5. Picciotto M, et al. Nicotinic Receptors in the Brain: Links between Molecular Biology and Behavior. Neuropsychopharmacology. 2000;22(5):451-465
6. Cordero-Erausquin M, et al. Nicotinic receptor function: new perspectives from knockout mice. TiPS. 2000;21:211-217
7. Clarke P.B.S., Pert A. Autoradiographic evidence for nicotinic receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res. 1985;248:255-358
8. Rapier C, Lunt G. Wonnacott, S. Stereoselective nicotine-induced release of dopamine from striatal synaptosomes: concentration dependence and repetitive stimulation. J Neurochem. 1988;50:1123-1130
9. Kaiser SA, Wonnacott S. Nicotinic receptor modulation of neurotransmitter release. In: Americ, Sp.P., Brioni, J.D. (Eds.), Neuronal Nicotinic Receptors: Pharmacology and Therapeutic Oppurtunities., 1998; Vol. 8, Wiley-Liss, New York, NY, pp. 141-159
10. Kulak JM, Nguyen TA, Olivera BM, McIntosh JM. Alpha-conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. J. Neurosci. 1997;17: 5263-5270
11. Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones I. Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. European Journal of Pharmacology. 2000;393:51-58
12. Cheramy A, Godeheu G, L’Hirondel M, Glowinski J. Cooperative contributions of cholinergic and NMDA receptors in the presynaptic control of dopamine release from synaptosomes of the rat striatum. J. Pharmacol. Exp. Ther. 1996;276:616-625
13. Garris PA, Wightman RM. Different kinetics govern dopaminergic transmission in the amygdale, prefrontal cortex and striatum: an in vivo valtammetric study. J. Neurosci. 14:442-450
14. Benwell MEM, Balfour DJK. The effects of acute and repeated nicotine treatment on nucleus accubens dopamine and locomotor activity. Br. J. Pharmacol. 1992;105:849-856
15. Shoaib M, Benwell MEM, Akbar MT, Stolerman IP, Balfour DJK. Behavioural and neurochemical adaptations to nicotine in rats: influence of NMDA antagonists. Br. J. Pharmacol. 1994;111:1073-1080
16. Bahk J, Li S, Park M, Kim M. Dopamine D1 and D2 receptor mRNA up-regulation in the caudate-putamen and nucleus accumbens of rat brains by smoking. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2002;26:1095-1104
17. Le Foll B, Schwartz JC, Sokoloff P. Disruption of nicotine conditioning by dopamine D(3) receptor ligands. Mol Psychiatry 2003 Reb;8(2):225-30
18. Smith KM, Mitchell SN, Joseph MH. Effects of chronic and subchronic nicotine on tyrosine hydroxylase activity in noradrenergic and dopaminergic neurons in the rat brain. J. Neurochem. 1991;57:1750-1756
19. Musso N, Benci S, Indiveri F, Lotti G. L-tyrosine and nicotine induce synthesis of L-Dopa and norepinephrine in human lymphocytes. Journal of Neuroimmunology. 1997;74:117-120
20. Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, Alexoff D, Shea C, Schlyer D, Wolf AP, Warner D, Zezulkova I, Cilento R. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996 Feb 22;379(6567):733-6
21. Berlin I, Spreux-Varoquaux O, Launay JM. Platelet monoamine oxidase B activity is inversely associated with plasma cotinine concentration. Nicotine Tob Res 2000 Aug;2(3):243-6
22. Lamensdorf I, Porat S, Simantov R, Finberg JP. Effect of low-dose treatment with selegiline on dopamine transporter (DAT) expression and amphetamine-induced dopamine release in vivo. Br J Pharmacol 1999 Feb; 126(4):997-1002
23. Mitchell SN, Brazell MP, Joseph MH, Alavijeh MS, Gray JA. Regionally specific effects of acute and chronic nicotine on rate of catecholamine and 5-hydroxytryptamine synthesis in rat brain. Eu. J. Pharmacol. 1989;167:311-322
24. Leslie FM, Gallardo KA, Park MK. Nicotinic acetylcholine receptor-mediated release of [3H]norepinephrine from developing and adult rat hippocampus: direct and indirect mechanisms. Neuropharmacology. 2002;42:653-651.
25. Bonanno G, Raiteri M. Release-regulating GABAA receptors are present on noradrenergic nerve terminals in selective area of the rat brain. Synapse. 1987;1:254-257
26. Abercrombie EB, Jacobs BL. Single unit response of noradrenergic neurons in the locus coeruleus of freely moving cats 1. Actutely presented stressful and non-stressful stimuli. J. Neurosci. 7:2837-2843.
27. Gilbert DG. Paradoxical tranquilizing and emotion-reducing effects of nicotine. Psychol. Bull. 86:643-661.
28. Seth P, Cheeta S, Tucci S, File S. Nicotinic-serotonergic interactions in brain and behaviour. Pharmacology, Biochemistry and Behavior. 2002;71:793-805
29. Reuben M, Clarke P. Nicotine-evoked [3H]5-hydroxytryptamine release from rat striatal synaptosomes. Neuropharmacology. 2000;30:290-299.
30. Schwartz RD, Lehman J, Kellar KJ. Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J Neurochem 1984;42:1495-8.
31. Cheeta S, Irvine EE, Kenny PJ, File SE. The dorsal raphe nucleus is a crucial structure mediating nicotine’s anxiolytic effects and the development of tolerence and withdrawal responses. Psychopharmacology. 2001a;155:78-85.
32. Lendvai B, et al. Figgrtrnyisl mrvhsnidmd involbrf in yhr rggrvy og nivoyiniv shonidyd DMPP and lobeline to release [3H]5-HT from rat hippocampal slices. Neuropharmacology. 1996;35:1769-77.
33. Rada PV, Mark GP, Hoebel BG. In vivo modulation of acetylcholine in the nucleus accumbens of freely moving rats: I. Inhibition by serotonin. Brain Res. 1993;619:98-104.
34. Muneoka K, Ogawa T, Kamei K, Muraoka S, Tomiyoshi R, Mimura Y, Kato H, Suzuko MR, Takigawa M. Nicotine exposure during pregnancy is a factor which influences seotonin transporter density in the rat brain. Eur J Pharmacol. 2001;411:279-82.
35. Olausson P, Engel JA, Soderpalm B. Behavioral sensitization to nicotine is associated with behavioral disinhibition; counteraction by citalopram. Psychopharmacology 1999;142:111-9.
36. Lee T, Jang M, Shin M, Lim B, Choi H, Kim H, Kim E, Kim C. Nicotine administration increases serotonin synthesis and tryptophan hydroxylase expression in dorsal raphe of food-deprived rats. Nutrition Research. 2002;22:1445-1452.
37. Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, Dunwiddie TV. Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J. Neurosci. 1998;18:1187-95.
38. Alkondon M, Pereira EF, Barbosa CT, Aluquerque EX. Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices. J. Pharmacol. Exp. Ther. 1997;283:1396-1411.
39. Li S, Park M, Bahk J, Kim M. Chronic nicotine and smoking exposure decreases GABAb1 receptor expression in the rat hippocampus. Neuroscience Letters. 2002;334:135-9.
40. Wei M, Stern MP, Haffner SM. Serum leptin levels in Mexican Americans and non-Hispanic whites: association with body mass index and cigarette smoking. Ann Epidemiol 1997;7:81.
41. Hodge AM, Westerman RA, de Courten MP, et al. Is leptin sensitivity the link between smoking cessation and weight gain? Int J Obes Rel Metab Disord 1997;21:50.
42. Mantzoros CS, Liolios AD, Tritos NA, et al. Circulating insulin concentrations, smoking, and alcohol intake are important independent. Obes Res. 1998;6:179
43. Eliasson B, Smith U. Leptin levels in smokers and long-term users of nicotine gum. Eur J Clin Invest. 1999;29:145.
44. Sanigorski A, Fahey R, Cameron-Smith D, Collier GR. Nicotine treatment decreases food intake and body weight via a leptin-independent pathway in Psammomys obesus. Diabetes, Obesity and Metabolism. 2002;3:346-50.
45. Li MD, Kane JK, Parker SL, McAllen K, Matta SG, Sharp BM. Nicotine administration enhances NPY expression in the rat hypothalamus. Brain Research. 2000;867:157-64.
46. Jang MH, Shin MC, Kim KH, Cho SY, Bahn GH, Kim EH, Kim CJ. Nicotine administration decreases neuropeptide Y expression and increased leptin receptor expression in the hypothalamus of food deprived rats. Brain Research. 2003;964:311-15.
47. Levin BE, Keesey RE. Defense of differing body weight set points in diet-induced obese and resistant rats. Am J Physiol. 1998;274:R412.
48. Kadohama, N., K. Shintani, and Y. Osawa, Tobacco alkaloid derivatives as inhibitors of breast cancer aromatase. Cancer Lett, 1993. 75(3): p. 175-182.
49. Bullion, K., S. Ohnishi, and Y. Osawa, Competitive inhibition of human placental aromatase by N-n- octanoylnornicotine and other nornicotine derivatives. Endocr Res, 1991. 17(3-4): p. 409-419.
50. Osawa, Y., et al., Aromatase inhibitors in cigarette smoke, tobacco leaves and other plants. J Enzyme Inhib, 1990. 4(2): p. 187-200.
51. Barbieri, R.L., P.M. McShane, and K.J. Ryan, Constituents of cigarette smoke inhibit human granulosa cell aromatase. Fertil Steril, 1986. 46(2): p. 232-236.
52. Barbieri, R.L., J. Gochberg, and K.J. Ryan, Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro. J Clin Invest, 1986. 77(6): p. 1727-1733.
53. Meikle AW, Liu XH, Taylor GN, Stringham JD. Nicotine and cotinine effects on 3 alpha hydroxysteroid dehydrogenase in canine prostate. Life Sci 1988;43(23):1845-50.
54. Patterson TR, Stringham JD, Meikle AW. Nicotine and cotinine inhibit steroidogensis in mouse leydig cells. Life Sciences. 1990;46:265-72.
55. Sarasin A, Schlumpf M, Muller M, Fleischmann I, Lauber M, Lichtensteiger W. Adrenal-mediated rather than direct effects of nicotine as a basis of altered sex steroid synthesis in fetal and neonatal rat. Reproductive Toxicology. 2003;17:153-62.
56. Jarvis M, et al. Nicotine yield from machine-smoked cigarettes and nicotine intakes in smokers: evidence from a representative population survey. Journal of the National Cancer Institute:93;134-138.
57. Benowitz NL, Porchet H, Sheiner L, et al. Nicotine absorption and cardiovascular effects with smokeless tobacco use: comparison with cigarettes and nicotine gum. Clin Pharmacol Ther. 1988;44:23-8.
58. Benowithz NL, Jacob PI, Savanapridi C. Determinants of nicotine intake while chewing nicotine polacrilex gum. Clin Pharmacol Ther. 1987;41:467-73.
59. Peng X, et al. Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol. Pharmacol. 1999;46:523-30.
60. Buisson B, Bertrand D. Nicotine addiction: the possible role of functional upregulation. Trends in Pharmacological Sciences. 2002;23:130-5.
61. Tanda G, Goldberg SR. Alteration of the Behavioral Effects of Nicotine by Chronic Caffeine Exposure. 2000;66:47-64.
62. Ishikawa M, Ouchi Y, Orimo H. Effect of calcitonin gene-related peptide on cytosolic free Ca2+ level in vascular smooth muscle. Eur J Pharmacol. 1993 Jul 15;246(2):121-8.
63. Peto R, Lopez AD, Borcham J, Thun M, Heath C. Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet. 1992;339:1268-678.
64. Balfour , DJ, Wright, AE, Benwell, ME and Birrell, CE, 2000. The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behav Brain Res 113, pp.
65. Hollander, E and Rosen, J, 2000. Impulsivity. J Psychopharmacol 14, pp. S39-S44.
66. Peter Olausson, Jörgen A. Engel and Bo Söderpalm, Involvement of serotonin in nicotine dependence: Processes relevant to positive and negative regulation of drug intake, Pharmacology Biochemistry and Behavior, Volume 71, Issue 4, April 2002, Pages 757-771.
67. Kirch , DG, Gerhardt, GA, Shelton, RC, Freedman, R and Wyatt, RJ, 1987. Effect of chronic nicotine administration on monoamine and monoamine metabolite concentrations in rat brain. Clin Neuropharmacol 10, pp. 376-383.
68. Linert W, Bridge MH, Huber M, Bjugstad KB, Grossman S, Arendash GW. In vitro and in vivo studies invgestigating possible antioxidant actions of nicotine: relevance to Parkinson’s and Alzheimer’s diseases. Biochim. Biophys. Acta. 1999;1454:143-52.
69. Yildiz D, Liu YS, Ercal N, Armstrong DW. Comparison of pure nicotine- and smokeless tobacco extract-unduced toxicities and oxidative stress. Arch Environ. Contam. Toxicol. 1999;37:434-9.
70. Gvozdjakova A, Kucharska J, Gvozdjak J. Effect of smoking on the oxidative processes of cardiomyocytes. Cardiology. 1992;81:81-4.
71. Guan ZZ, Yu WF, Nordberg A. Dual effects of nicotine on oxidative stress and neuroprotection in PC12 cells. Neurochemistry International. 2003;43:243-9.
72. Graves AB, Mortimer JA. Does smoking reduce the risks of Parkinson’s and Alzheimer’s disease? J Smoking-Related Dis. 1994;5:79-90
73. Mahmarian JJ, Moye LA, Nasser GA, et al. A strategy of smoking cessation combined with nicotine patch therapy reduces the extent of exercise induced myocardial ischemia. J Am Coll Cardiol. 1997;30:125-30.
74. Waeber B, Schaller M, Nussberger J, Bussien J, Hofbauer KG, Brunner HR. Skin blood flow reduction induced by cagarette smoking: role of vasopressin. Am J Physiol. 1984;249:895-901.
75. Kool MJF, Hocks APG, Struijker Boudier HAJ, Reneman RS, Van Bortel LMAB. Short- and long-term effects of smoking on arterial wall properties in habitual smokers. J Am Coll Cardiol. 1993;22:1881-6.
76. Becker BG, Terres W, Kratzer M, Gerlach E. Blood platelet function after chronic treatment of rats and guinea pigs with nicotine. Klin Wochenschr. 1988;66: Suppl XI:28-36.
77. Wennmalm A, Benthin G, Granstrom EF, Persson L, Peterson A, Winnell S. Relation between tobacco use and urinary excretion of thomboxane A2 and protacylcin metabolites in young men. Circulation. 1991;83:1698-704.
78. Cluette-Brown J, Mulligan J, Doyle K, Hagan S, Osmolski T, Hojnacki J. Oral nicotine induces an artherogenic lipoprotein profile. Proc Soc Exp Biol Med. 1986;37:529-533.
79. Thomas GAO, Davies SV, Rhodes J, Russell MAH, Feyerabend C, Sawe U. Is transdermal nicotine associated with cardiovascular risk? J R Coll Physicians Lond. 1995;29:392-6.
80. Sellers , EM, Naranjo, CA and Kadlec, K, 1987. Do seretonin uptake inhibitors decrease smoking? Observations in a group of heavy drinkers. J Clin Psychopharmacol 7, pp. 417-420.
81. Killen , JD, Fortmann, SP, Schatzberg, AF, Hayward, C, Sussman, L, Rothman, M, Strausberg, L and Varady, A, 2000. Nicotine patch and paroxetine for smoking cessation. J Consult Clin Psychol 68, pp. 883-889.
82. Martinez-Raga J, Keaney F, Sutherland G, Perez-Galvez B, Strang J. Treatment of nicotine dependence with bupropion SR: review of its efficacy, safety and pharmacological profile. Addict Biol. 2003 Mar;8(1):13-21
83. Houtsmuller EJ, Thornton JA, Stitzer ML. Effects of selegiline (L-deprenyl) during smoking and short-term abstinence. Psychopharmacology (Berl) 2002 Sep;163(2):213-20.
Ekspert SFD
Pochwały Postów 686 Wiek 32 Na forum 11 Płeć Mężczyzna Przeczytanych tematów 13120
Witaj, przygotowaliśmy kilka tematów które mogą Cię zainteresować:

PRZYSPIESZ SPALANIE TŁUSZCZU!

Nowa ulepszona formuła, zawierająca szereg specjalnie dobranych ekstraktów roślinnych, magnez oraz chrom oraz opatentowany związek CAPSIMAX®.

Sprawdź
...
Najnowsza odpowiedź. Aktualizacja:
Zgłoś naruszenie
Początkujący
Szacuny 11 Napisanych postów 942 Na forum 19 lat Przeczytanych tematów 6510
jak dla mnie nikotyna nie jest jakas super substancja. probowalem jej ale nie podoba mi sie ten rodzaj pobudzenia. MOze zbyt duza dawke zastosowalem, ale wole inne dodatki. ma czas rozkladu calkiem pokazny wiec to jednoczenie plus jak i minus.



OM, jaka dzienna dawke max zazyles ?
...
Napisał(a)
Zgłoś naruszenie
qazar ZASŁUŻONY
Ekspert
Szacuny 734 Napisanych postów 31016 Na forum 21 lat Przeczytanych tematów 94344
...
Napisał(a)
Zgłoś naruszenie
Początkujący
Szacuny 4 Napisanych postów 1976 Na forum 18 lat Przeczytanych tematów 8020
rzucilem palenie i ******le nikotyne ale sog

siea wiea....

...
Napisał(a)
Zgłoś naruszenie
Charon ZASŁUŻONY
Ekspert
Szacuny 119 Napisanych postów 5388 Na forum 19 lat Przeczytanych tematów 111118
Gratuluje artykulu, skrotowo i w bardzo zrozumialy sposob wyjasnione zalety nikotyny. Dla chcacych zglebic temat glebiej polecam nastepujacy artykul (niestety anglojezyczny)
http://magazine.mindandmuscle.net/magmain.php?issueID=13&pageID=130 

Beatus, qui prodest, quibus potest

...
Napisał(a)
Zgłoś naruszenie
Ekspert
Szacuny 11148 Napisanych postów 51569 Wiek 31 lat Na forum 24 lat Przeczytanych tematów 57816
no wlasnie z MandM refy zakosiłem
...
Napisał(a)
Zgłoś naruszenie
Początkujący
Szacuny 4 Napisanych postów 563 Na forum 20 lat Przeczytanych tematów 19014
niezle ...

podpisy są dynamiczne :)

...
Napisał(a)
Zgłoś naruszenie
Początkujący
Szacuny 14 Napisanych postów 6722 Wiek 34 lat Na forum 19 lat Przeczytanych tematów 28641
no dobrze nieźle

ale czy ktos bedzie robił odblok z nikotyny??

ja bym sie bał, niech ktos kto konczy cykl stestuje to i napisze

Siłę człowieka mierzy się ilością jego nieprzyjaciół.

...
Napisał(a)
Zgłoś naruszenie
Początkujący
Szacuny 4 Napisanych postów 1976 Na forum 18 lat Przeczytanych tematów 8020

siea wiea....

...
Napisał(a)
Zgłoś naruszenie
Ekspert
Szacuny 96 Napisanych postów 8310 Na forum 20 lat Przeczytanych tematów 38343
Po silce papierosek jak najbardziej - korwa rzucam palenie. Na dobre!

Be real - you have to make this shit your life. If you aren't in it all the way fully committed don't f***ing bother.

...
Napisał(a)
Zgłoś naruszenie
Andrew3 Berserk Labs
Znawca
Szacuny 33 Napisanych postów 4001 Wiek 38 lat Na forum 21 lat Przeczytanych tematów 46802
Jest udowodnione że palenie papierosów podnosi poziom testosteronu ale głównie u młodych niewyćwiczonych gości

OM Sog

Serdecznie zapraszam na Fight24.pl

...
Napisał(a)
Zgłoś naruszenie
Ekspert
Szacuny 11148 Napisanych postów 51569 Wiek 31 lat Na forum 24 lat Przeczytanych tematów 57816
na odbloku bym plastry przyklejal i tyle
po co dymic to gowno ?
teraz jade na niquitinie 4mg i jest ok nie ma to jak robic aero z tabsem pod jezykiem i czuć nikotyne w glowie

Zmieniony przez - om w dniu 2005-10-02 18:32:32
Nowy temat Wyślij odpowiedź
Poprzedni temat

cykl na koniec pazdziernika

Następny temat

pytanko benda sogi

WHEY premium